Przez ostatnie czterdzieści pięć lat zarówno Stephen, jak i setki innych
fizyków usiłowało zrozumieć dokładną naturę chaotyczności czarnych dziur. Jest to zagadnienie, które pozwala uzyskać wgląd w aspekty łączenia mechaniki kwantowej z ogólną teorią względności — czyli wciąż tajemnicze prawa grawitacji kwantowej. Jesienią 1974 roku Stephen przyjechał ze swoimi doktorantami i rodziną (żoną Jane i dwójką dzieci, Robertem i Lucy) na rok do Pasadeny w Kalifornii, aby wraz ze studentami uczestniczyć w życiu intelektualnym mojej uczelni, Caltechu, oraz na jakiś czas połączyć siły z moim zespołem badawczym. Był to cudowny rok, który przypadł w apogeum okresu zwanego potem złotą epoką badań nad czarnymi dziurami. Podczas owego roku Stephen, jego studenci i niektórzy z moich studentów usiłowali głębiej rozpracować kwestie dotyczące czarnych dziur. W pewnej mierze uczestniczyłem w tym również ja, niemniej obecność Stephena i jego przewodnia rola w badaniach naszego połączonego zespołu nad czarnymi dziurami pozwoliła mi podjąć nowy kierunek badawczy, o którym myślałem od kilku lat, a dotyczący fal grawitacyjnych. Istnieją jedynie dwie kategorie fal, które są w stanie przemierzać wszechświat, przynosząc nam informację o dalekich obiektach — fale elektromagnetyczne (obejmujące światło widzialne, promieniowanie rentgenowskie, promieniowanie gamma, mikrofale, fale radiowe…) oraz fale grawitacyjne. Fale elektromagnetyczne stanowią oscylacje pól elektrycznych i magnetycznych, które przemieszczają się z prędkością światła. Gdy napotkają na swojej drodze cząstki naładowane elektrycznie, na przykład elektrony w antenie radiowej lub telewizyjnej, wprawiają je w drgania, przekazując im w ten sposób informację, jaką niosą. Drgania te mogą zostać następnie wzmocnione i przekazane na wejście głośnika lub monitora telewizyjnego, gdzie informacja ulega przetworzeniu na postać możliwą do percepcji przez człowieka. Fale grawitacyjne, według Einsteina, stanowią rozchodzące się odkształcenie przestrzeni o charakterze oscylacyjnym — przestrzeń ulega lokalnie na przemian rozciąganiu i ściskaniu. W 1972 roku Rainer (Rai) Weiss z Massachusetts Institute of Technology skonstruował detektor fal grawitacyjnych, w którym zwierciadła znajdujące się na końcach i w miejscu zetknięcia dwóch rur połączonych w kształt litery L są odpychane od siebie w jednej odnodze przez zaburzenie rozciągające przestrzeń, natomiast popychane ku sobie w drugiej odnodze przez zaburzenie ściskające przestrzeń. Rai zaproponował, by do pomiaru wielkości tych oscylacji zastosować wiązki laserowe. Światło lasera rejestruje wówczas informację niesioną przez falę grawitacyjną, a następnie sygnał ten zostaje wzmocniony i poddany obróbce komputerowej, aby mógł być odczytany przez człowieka. Zmianę paradygmatu badawczego, jaka może nastąpić w konsekwencji wykrycia fal grawitacyjnych, można porównać do zapoczątkowania współczesnej astronomii opartej na obserwacjach promieniowania elektromagnetycznego prowadzonych przez Galileusza, który zbudował niewielki teleskop optyczny i skierował go na Jowisza, dzięki czemu odkrył cztery największe księżyce tej planety. W ciągu czterystu lat od czasów Galileusza astronomia całkowicie zrewolucjonizowała naszą wiedzę o wszechświecie, wykorzystując nie tylko światło tak jak on, ale i inne rodzaje fal elektromagnetycznych. W 1972 roku wraz z moimi studentami zacząłem się zastanawiać, czego moglibyśmy się dowiedzieć o wszechświecie za pośrednictwem fal grawitacyjnych, tworząc w ten sposób własną wizję astronomii grawitacyjnej. Ponieważ fale grawitacyjne polegają na odkształceniu przestrzeni, ich źródłem są głównie obiekty kosmiczne, które same w całości lub w części składają się z zakrzywionej czasoprzestrzeni, czyli przede wszystkim czarne dziury. Doszliśmy zatem do wniosku, że fale grawitacyjne nadają się idealnie do empirycznego badania i testowania koncepcji Stephena dotyczących czarnych dziur. Patrząc w szerszej perspektywie, uważaliśmy, że fale grawitacyjne są czymś tak radykalnie odmiennym od fal elektromagnetycznych, iż niemal na pewno staną się podstawą kolejnego przewrotu poznawczego w badaniach wszechświata, porównywalnego być może z rewolucją elektromagnetyczną dokonaną przez Galileusza — jeśli te nieuchwytne fale uda się wykryć i rejestrować. Ale to było bardzo wielkie „jeśli”. Szacowaliśmy, że fale grawitacyjne docierające do Ziemi są tak słabe, że pod ich wpływem zwierciadła na końcach rur w instalacji Raia Weissa poruszą się tam i z powrotem względem siebie o nie więcej niż jedną setną średnicy protonu (co odpowiada jednej dziesięciomilionowej rozmiarów atomu), nawet gdy są odległe od siebie o kilka kilometrów. Zmierzenie tak znikomych przesunięć było zadaniem ogromnie trudnym. Zatem podczas owego cudownego roku, gdy zespoły Stephena i mój połączyły swoje siły, spędzałem większość czasu na rozpatrywaniu technicznych możliwości wykrycia fal grawitacyjnych. Stephen bardzo nam w tym pomógł, gdyż kilka lat wcześniej on i jego doktorant, Gary Gibbons, zaprojektowali detektor fal grawitacyjnych (choć go potem nie zbudowali). Krótko po powrocie Stephena do Cambridge moje dociekania zaowocowały decyzją podjętą po całonocnej intensywnej dyskusji z Raiem Weissem w pokoju hotelowym Raia w Waszyngtonie. Doszedłem do przekonania, że perspektywy na sukces są na tyle duże, iż postanowiłem poświęcić większość swojej kariery naukowej i energię moich przyszłych studentów na wspomaganie Raia i innych eksperymentatorów w urzeczywistnianiu naszej wizji astronomii grawitacyjnej. Reszta, jak to mówią, jest historią. 14 września 2015 roku detektory fal grawitacyjnych LIGO (zbudowane w ramach zatrudniającego tysiąc osób projektu, który Rai, ja i Ronald Drever wspólnie sfinansowaliśmy, a Barry Barish wykonał prace organizacyjne i montażowe) wykryły i zarejestrowały pierwsze fale grawitacyjne. Porównując kształt rzeczywistego sygnału z przewidywaniami symulacji komputerowych, nasz zespół doszedł do wniosku, że ich źródłem jest kolizja dwóch masywnych czarnych dziur odległych o 1,3 miliarda lat świetlnych od Ziemi. To był prawdziwy początek astronomii grawitacyjnej. Nasz zespół dokonał w odniesieniu do fal grawitacyjnych tego, co Galileusz w odniesieniu do fal elektromagnetycznych. Jestem głęboko przekonany, że w ciągu kilku najbliższych dziesięcioleci następne pokolenie astronomów grawitacyjnych nie tylko wykorzysta te fale do przetestowania sformułowanych przez Stephena praw fizyki czarnych dziur, ale i zarejestruje sygnał grawitacyjny od osobliwości pierwotnej naszego wszechświata, co pozwoli zweryfikować teorie Stephena i innych kosmologów dotyczące tego, jak powstał wszechświat. W trakcie tego cudownego roku 1974/1975, gdy ja zastanawiałem się nad falami grawitacyjnymi, a Stephen kierował badaniami naszego połączonego zespołu nad czarnymi dziurami, sam Stephen wpadł na koncepcję jeszcze bardziej radykalną niż odkrycie promieniowania Hawkinga. Przedstawił on przekonujący, prawie niemożliwy do zakwestionowania dowód, że gdy dochodzi do powstania, a następnie całkowitego wyparowania czarnej dziury poprzez emisję promieniowania, zawarta w niej informacja zostaje bezpowrotnie utracona. |
Nowe przełomowe odkrycia w astronomii fal grawitacyjnych Dodano: 20.10.2017 :: Kategorie: Aktualności, Sukcesy naszych laureatów -A A+ Astronomowie po raz pierwszy zarejestrowali jednocześnie dwa typy fal: grawitacyjne i elektromagnetyczne, pochodzące od jednego zjawiska – zderzenia dwóch gwiazd neutronowych. W obserwacjach, prowadzonych przez zespoły badawcze na całym świecie, brali udział również polscy naukowcy, wśród których są również laureaci programów Fundacji – dr hab. Dorota Rosińska z Uniwersytetu Zielonogórskiego (laureatka programów FOCUS i POMOST), prof. Krzysztof Belczyński z Centrum Astronomicznego im. M. Kopernika PAN w Warszawie (laureat programów FOCUS i MISTRZ), a także prof. Tomasz Bulik z Obserwatorium Astronomicznego Uniwersytetu Warszawskiego (laureat programu TEAM). 17 sierpnia br. naukowcy po raz pierwszy bezpośrednio zarejestrowali fale grawitacyjne – ,,zmarszczki” w czasoprzestrzeni – oraz, jednocześnie, fotony o różnych energiach pochodzące ze zderzenia się gwiazd neutronowych. Była to pierwsza w historii równoczesna detekcja fal grawitacyjnych i światła pochodzącego z tego samego kosmicznego kataklizmu. Odkrycia dokonały: amerykańskie laserowe interferometryczne obserwatorium fal grawitacyjnych LIGO, europejskie laserowe interferometryczne obserwatorium fal grawitacyjnych Virgo oraz około 70 obserwatoriów naziemnych i kosmicznych. W projekcie LIGO uczestniczy ponad 1200 naukowców z całego świata, natomiast projekt Virgo to ponad 280 fizyków i inżynierów należących do 20 różnych europejskich grup badawczych, wśród których jest grupa POLGRAW z Polski. Informacje o odkryciu zostały ogłoszone 16 października br. podczas konferencji prasowych organizowanych równolegle w różnych ośrodkach naukowych na świecie, w tym również i w Warszawie. Wspólne obserwacje fal grawitacyjnych i światła ze zlewających się dwóch gwiazd neutronowych dają odpowiedź na wiele fundamentalnych pytań m. in. jaka jest natura błysków gamma, jak tworzą się metale cięższe niż żelazo, z czego zbudowane są gwiazdy neutronowe, czyli najgęstsze stabilne obiekty, jaka jest prędkość grawitacji, jak szybko rozszerza się Wszechświat – mówi dr hab. Dorota Rosińska, prof. UZ, członkini grupy POLGRAW, która modelowała numerycznie zlewające się gwiazdy neutronowe w układach podwójnych, analizowała dane z detektorów Virgo/LIGO oraz badała własności populacji układów podwójnych gwiazd neutronowych. Warto dodać, że za obserwacje fal grawitacyjnych została w tym roku przyznana nagroda Nobla z fizyki, którą otrzymali członkowie zespołu Ligo-Virgo, profesorowie: K. Thorn, R. Weiss i B. Barish. Źródło informacji: http://www.infoserwis.uz.zgora.pl/index.php?gwiazdy-neutronowe Więcej informacji o odkryciu można znaleźć: Pierwszy raz wykryto fale grawitacyjne od zderzenia gwiazd neutronowych – serwis PAP Nauka w Polsce http://naukawpolsce.pap.pl/aktualnosci/news,460151,pierwszy-raz-wykryto-fale-grawitacyjne-od-zderzenia-gwiazd-neutronowych.html Fizyk: najnowsze obserwacje fal grawitacyjnych to początek nowej epoki w astronomii – serwis PAP Nauka w Polsce http://naukawpolsce.pap.pl/aktualnosci/news,460154,fizyk-najnowsze-obserwacje-fal-grawitacyjnych-to-poczatek-nowej-epoki-w-astronomii.html Zdjęcie: Foter.com |
Serwis Informacyjny Uniwersytetu Zielonogórskiego
Aktualności Wydarzenia Archiwum Kontakt Komunikaty SARS-CoV-2 Nowe przełomowe odkrycia w astronomii fal grawitacyjnych 16 października 2017 r. KAZ_8055r.jpg prof. D. Gondek-Rosińska (fot. K. Adamczewski) LIGO i Virgo rejestrują pierwsze w historii fale grawitacyjne z układu podwójnego gwiazd neutronowych, to także pierwsza w historii równoczesna detekcja fal grawitacyjnych i światła pochodzących z tego samego kosmicznego kataklizmu. 17 sierpnia br. naukowcy po raz pierwszy bezpośrednio zarejestrowali fale grawitacyjne - ,,zmarszczki” w czasoprzestrzeni - oraz, jednocześnie, fotony o różnych energiach pochodzące ze zderzenia się gwiazd neutronowych. To pierwsza w historii równoczesna detekcja fal grawitacyjnych i światła pochodzącego z tego samego kosmicznego kataklizmu. Odkrycia dokonało amerykańskie laserowe interferometryczne obserwatorium fal grawitacyjnych LIGO, europejskie laserowe interferometryczne obserwatorium fal grawitacyjnych Virgo oraz około 70 obserwatoriów naziemnych i kosmicznych. Obserwacje były prowadzone m. in. wieloma teleskopami należącymi do Europejskiego Obserwatorium Południowego (ESO), którego członkiem jest Polska, takimi jak VLT, VST, VISTA, NTT, jak również siecią radioteleskopów ALMA. Odkrycie to jest potwierdzeniem teorii prof. Bohdana Paczyńskiego. To prof. Paczyński ze swoim współpracownikiem Li-Xin Li w 1998 r. jako pierwsi zaproponowali występowanie optycznych błysków towarzyszących złączeniu gwiazd neutronowych. W projekcie LIGO uczestniczy ponad 1200 naukowców z całego świata, natomiast projekt Virgo to ponad 280 fizyków i inżynierów należących do 20 różnych europejskich grup badawczych, m.in. grupa POLGRAW w Polsce. Wśród polskich naukowców pracuje prof. Dorota Rosińska z Instytutu Astronomii im. prof. Janusza Gila Uniwersytetu Zielonogórskiego, która modelowała numerycznie zlewające się gwiazdy neutronowe w układach podwójnych, analizowała dane z detektorów Virgo/LIGO oraz badała własności populacji układów podwójnych gwiazd neutronowych. Wspólne obserwacje fal grawitacyjnych i światła ze zlewających się dwóch gwiazd neutronowych dają odpowiedź na wiele fundamentalnych pytań m. in. jaka jest natura błysków gamma? jak tworzą się metale cięższe niż żelazo? z czego zbudowane są gwiazdy neutronowe, czyli najgęstsze stabilne obiekty ? jaka jest prędkość grawitacji ? jak szybko rozszerza się Wszechświat? - mówi prof. Rosinska Gwiazdy neutronowe to najmniejsze i najgęstsze znane nauce gwiazdy, które powstają, gdy masywne gwiazdy zapadają się i eksplodują jako supernowe. Układ dwóch gwiazd neutronowych zacieśnia stopniowo swoją orbitę (gwiazdy zbliżają się do siebie) emitując fale grawitacyjne, które były rejestrowane przez detektory interferometryczne przez około 100 sekund. Wytworzone podczas zderzenia światło w postaci wysokoenergetycznych fotonów gamma zostało wykryte na Ziemi około dwie sekundy po momencie zderzenia. W trakcie kolejnych dni i tygodni wykryto promieniowanie elektromagnetyczne o różnych energiach pochodzące z miejsca zdarzenia - w tym promieniowanie rentgenowskie, ultrafioletowe, optyczne, podczerwone i radiowe. Detekcja ta dała astronomom bezprecedensową okazję do zbadania procesu zderzenia się dwóch gwiazd neutronowych. Obserwacje dokonane przez US Gemini Observatory, European Very Large Telescope oraz teleskop kosmiczny Hubble’a ujawniają w rejestrowanym świetle linie widmowe nowo powstałych pierwiastków, w tym złota i platyny. Udziela to odpowiedzi na nierozwiązane od dziesiątek lat pytanie, skąd bierze się w Kosmosie około połowa pierwiastków cięższych od żelaza. Wyniki LIGO-Virgo opublikowano dziś w czasopiśmie Physical Review Letters. Dodatkowe prace zespołów LIGO i Virgo oraz obserwatoriów astronomicznych zostały przekazane lub zaakceptowane do publikacji w różnych czasopismach. Każde obserwatorium rejestrujące fale elektromagnetyczne będzie ogłaszało wyniki swoich własnych szczegółowych obserwacji, jednak już teraz ogólny obraz wyłaniający się z tych obserwacji potwierdza to, że zaobserwowany sygnał fali grawitacyjnej pochodził z układu dwóch zlewających się gwiazd neutronowych. Około 130 milionów lat temu dwie gwiazdy neutronowe znalazły się w wyniku emisji fal grawitacyjnych w odległości około 300 km od siebie, ciągle zwiększając swoją szybkość i nadal zbliżając się do siebie. Taki ruch odkształcał czasoprzestrzeń w sąsiedztwie gwiazd, uwalniając - jeszcze zanim gwiazdy zderzyły się ze sobą — coraz więcej energii w postaci fal grawitacyjnych. W momencie zderzenia materia obu gwiazd połączyła się w jeden ultra-gęsty i gorący obiekt emitując ,,ognistą kulę” (“fireball”) promieniowania gamma. Rejestracja czasu nadejścia tego promieniowania w porównaniu z czasem detekcji zderzenia gwiazd w falach grawitacyjnych potwierdziła inne przewidywanie ogólnej teorii grawitacji Einsteina mówiące, że fale grawitacyjne propagują się z prędkością światła. Teoretycy przewidzieli, że po błysku gamma pojawi się “kilonova” (przez podobieństwo do zjawiska supernowej) - wybuch o nieco mniejszej niż supernowa energii, w którym materia pozostała po zderzeniu się gwiazd neutronowych, emitująca nieco promieniowania widzialnego, jest wyrzucana z miejsca zderzenia daleko w przestrzeń. Obserwacje tego promieniowania widzialnego wskazują na tworzenie się ciężkich pierwiastków, takich jak ołów i złoto, które są następnie rozpraszane we Wszechświecie. W najbliższych tygodniach i miesiącach teleskopy na całym świecie będą kontynuować obserwacje poświaty powstałej po zderzeniu się gwiazd neutronowych, zdobywając nowe informacje o różnych etapach tego procesu, o jego oddziaływaniu na kosmiczne otoczenie i o mechanizmach produkcji ciężkich pierwiastków we Wszechświecie. A już w poniedziałek, 23 października br. o godz. 16.00 w Sali 106 Wydziału Fizyki i Astronomii przy ul. Szafrana 4A odbędzie się wykład prof. Doroty Rosińskiej na temat nagrody Nobla, tj. przełomowego odkrycia fal grawitacyjnych. |
Free forum by Nabble | Edit this page |